# 90. Molecular Polarisability. The Conformations of 2,3-Diphenyl-1,4-dioxen and Some 2,3-Disubstituted 1,4-Dioxans as Solutes. 

By C.-Y. Chen and R. J. W. Le Fèvre.

Polarisation and polarisability measurements, together with nuclear magnetic resonance (n.m.r.) spectra, show that the so-called cis 2,3 -dichloro1,4 -dioxan, m. p. $52^{\circ}$, is actually the trans-compound and that the isomers of 2,3-diphenyl-1,4-dioxan with m. p. 46 and $132^{\circ}$ are cis and trans, respectively. In all cases studied, the heterocyclic rings remain in a chair form. The n.m.r. spectrum of 2,3 -diphenyl-1,4-dioxan of m. p. $132^{\circ}$ indicates that, at room temperature, the rotation of the phenyl rings is hindered. The $1,4-$ dioxen ring in 2,3-diphenyl-1,4-dioxen appears to exist preferentially as a halfchair form.

THE conformations of saturated six-membered heterocyclic molecules have not been extensively investigated despite apparent similarities to the cyclohexane series. We have begun a systematic study of such compounds and here report details for some derivatives of 1,4-dioxan.

## Experimental

Solutes, Methods, etc.--The solutes, trans-2,3-dibromo-1,4-dioxan, m. p. $73^{\circ}$ (I), the 2,3-di-chloro-1,4-dioxans, m. p. $30^{\circ}$ (IIa) and $52^{\circ}$ (IIb), 2,3-diphenyl-1,4-dioxen, m. p. $89^{\circ}$ (III), the 2,3 -diphenyl-1,4-dioxans, m. p. $46^{\circ}$ (IVa) and $132^{\circ}$ (IVb), and trans-p-dioxino[2,3-b]-p-dioxin (R.R.I. 1644) (the so-called 1,4:5,8-naphthodioxan), m. p. $134^{\circ}$, (V) were synthesized as described in refs. 1-3.

Details of apparatus, procedures, symbols, etc., involved with the polarisation and polarisability measurements, have been given before. ${ }^{4}$ Nuclear magnetic resonance (n.m.r.) spectra were recorded on a Varian Associates A60 spectrometer operating at 60 Mc ./sec. for $5-10 \%$ $\mathrm{w} / \mathrm{v}$ solutions in deuteriochloroform containing tetramethylsilane as internal reference.

Polarisation, Polarisability Measurements, and Results.-These follow under the usual headings ${ }^{4}$ as Tables 1 and 2. Equations used in passing from Table 1 to Table 2 are summarised in ref. 5.

The dipole moments now found confirm those recorded in refs. 6 and 7. No previously published data for the dipole moments of compounds (III), (IVa), and (IVb) can be located.

## Discussion

Previous Assignments.-Until recently, the configurational assignments for a number of 2,3 -disubstituted 1,4 -dioxans have been ${ }^{3,6,8}$ as shown in Table 3 . Among these assignments, only those for compounds (I) and (IIa) can be regarded as conclusive ( $X$-ray diffraction studies ${ }^{6}$ having provided evidence that (I) and (IIa) exist in conformations in which the rings are in chair forms and the substituents are diaxial). Theoretically, such conformations, taken as rigid, should not exhibit appreciable dipole moments. The experimental moment of 1.86 D for (I) and 1.67 D for (IIa) can be explained only by reasoning

[^0]Table 1.
Incremental Kerr effects, refractive indexes, dielectric constants and densities for solutions containing weight fraction $w_{2}$ of solute in benzene $*$ at $25^{\circ}$.

whence $\Sigma \Delta B / \Sigma w_{2}=-1.438 \times 10^{-7}$, $\Sigma \Delta \varepsilon / \Sigma w_{2}=1.6726, \Sigma \Delta d / \Sigma w_{2}=0.5296$,
$\Sigma \Delta n / \Sigma w_{2}=0.0382$ and $\Sigma \Delta n^{2} / \Sigma w_{2}=0 \cdot 1146$.


whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=0.3416 ; \Sigma \Delta d / \Sigma w_{2}=0.2285$; $\Sigma \Delta n / \Sigma w_{2}=0.0679$ and $\Sigma \Delta n^{2} / \Sigma w_{2}=0.2307$.
Solute: 2,3,-diphenyl-1,4-dioxan, m. p. $132^{\circ}$ (IVb)

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=0.4453, \Sigma \Delta d / \Sigma w_{2}=0.2172$, $\Sigma \Delta n / \Sigma w_{2}=0.0652$ and $\Sigma n^{2} / \Sigma w_{2}=0.1956$.
Solute: " trans"-p-dioxino[2,3-b]-p-dioxin,

| $10^{5} w^{2}$ | 1917 | 3280 | 4681 |
| :---: | :---: | :---: | :---: |
| $10^{11} \Delta B$ | Indistinguishable from zero |  |  |
| $10^{4} \Delta \varepsilon$ | 75 | 129 | 182 |
| $10^{4} \Delta d$ | 56 | 97 | 138 |
| $10^{4} \Delta n$ | -3 | -5 | -8 |

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=0.3908, \Sigma \Delta d / \Sigma w_{2}=0.2946$,
$\Sigma \Delta n / \Sigma w_{2}=-0.0162$, and $\Sigma \Delta n^{2} / \Sigma w_{2}=-0.0486$.

Solute: 2,3-dichloro-1,4-dioxan, m. p. $52^{\circ}$ (IIb)

| $10^{5} w_{2}$ | 336 | 578 | 932 | 1215 |
| :---: | :---: | :---: | :---: | :---: |
| $10^{11} \Delta B$ | 249 | 426 | 695 | 899 |
| $10^{4} \Delta \varepsilon$ | 215 | 371 | 600 | 783 |
| $1 \mathrm{P}^{4} \Delta d$. | 13 | 22 | 35 | 48 |
| $10^{4} \Delta n$ | 6 | 10 | 16 | 20 |

whence $\Sigma \Delta B / \Sigma w_{2}=7.413 \times 10^{-7}$,
$\Sigma \Delta \varepsilon / \Sigma w_{2}=6.433, \Sigma \Delta d / \Sigma w_{2}=0.3855$, $\Sigma \Delta n / \Sigma w_{2}=0.0170$, and $\Sigma \Delta n^{2} / \Sigma w_{2}=0.0510$.

25, $d_{1}=0.8738$ and $n_{1}=1.4973$. $\dagger$ Owing to the smallness of the Kerr effects and the low solubilities of these compounds, $\Delta B$ values could not be measured with certainty.

Table 2.
Polarisations, molar Kerr constants, dipole moments, etc., calculated from Table 1.

| Solute | $\alpha \varepsilon_{1}$ | $\beta$ | $\gamma$ | $\delta$ | $10^{12} \infty\left({ }_{m} K_{2}\right)$ | ${ }_{\mathrm{T}} P$ (c.c.) | $R_{\text {D }}$ (c.c. | $\mu^{*}(\mathrm{D})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| trans-2,3-Dibromo-1,4-dioxan (I) | $1 \cdot 672_{8}$ | $0 \cdot 6061$ | 0.0254 | $-3.507$ | $-72.5$ | $110 \cdot 4$ | 37.8 | 1.86 |
| 2,3-Dichloro-1,4-dioxan, m. p. $30^{\circ}$ |  | 0.4008 | 0 | 0 | -3.81 | $90 \cdot 12$ | 31.5 | -67 |
| m. p. $522^{\circ}$ (IIb) | ${ }^{1} \cdot 4363_{7}$ | $0 \cdot 4412$ | $\mathrm{O}_{0} 011_{4}$ | $18.080_{5}$ | -3.8.5 | 219.9 | $31 \cdot 5$ $30 \cdot 9$ | 1.03 |
| 2,3-Diphenyl-1,4-dioxen (III) | 0.7964 | $0 \cdot 2675$ | $0.061{ }_{8}$ | 1.212 | $27 \cdot 1$ | 95•18 | $71 \cdot 1$ | 1.00 |
| 2,3-Diphenyl-1,4-dioxan, m. p. $46^{\circ}$ <br> (IVa) | $0.341{ }_{6}$ | 0.2615 | $0.045_{4}$ | - | - | 75.92 | $68 \cdot 8$ | $0 \cdot 42$ |
| m. p. $132^{\circ}$ (IVb) | $0 \cdot 445{ }_{3}$ | $0 \cdot 2486$ | $0.043_{6}$ | - | - | $81 \cdot 66$ | $69 \cdot 5$ | $0 \cdot 65$ |
| trans- $p$-Dioxino[2,3-b]-p-dioxin <br> (V) | 3908 | 3371 | $0 \cdot 010_{8}$ | - | - | $43 \cdot 77$ | $31 \cdot 2$ | 0.74 |

that the 1,3 -interactions between the axial hydrogen and halogen atoms force the rings to deviate from ideal chairs and settle into conformations similar to (A) in solution.

The proposed distortion, expected to be slightly greater for (I) than (IIa), is reflected in the decreasing $\mu_{\text {obs }}$ and the increasing $\infty\left({ }_{m} K_{2}\right)$ obs. in going from (I) to (IIa).

On the other hand, the conformational similarity between (I) and (IIa) as solutes is
shown by the close resemblance of the $\mathrm{A}_{2} \mathrm{~B}_{2}$ splitting pattern in the n.m.r. spectrum of (I), reproduced here as Fig. (1), to that of compound (IIa). ${ }^{8}$

where $\mathrm{X}=$ halogen
(A)

The isomer of 2,3 -dichloro-1,4-dioxan (IIb) melting at $52^{\circ}$ was assumed to be cis a priori, because (IIa) is trans; and the isomer of 2,3-diphenyl-1,4-dioxan (IVa) melting at $46^{\circ}$, as it was prepared by a Grignard reaction in high yield, was designated trans by Summerbell and his co-workers. ${ }^{3}$

## Table 3.

Previously assigned configurations.


As early as 1953, melting-point evidence led Stumpf ${ }^{9}$ to favour the assignment of a trans-configuration to the isomer of 2,3-diphenyl-1,4-dioxan melting at $132^{\circ}(\mathrm{IVb})$ and cis


Fig. 1. The n.m.r. spectrum of "trans"-2,3-dibromo-1,4-dioxan as a solute in deuteriochloroform.
to (IVa). Nevertheless, after studying the hydrogenation of 2,3-diphenyl-1,4-dioxen (III) (giving the isomers of 2,3 -diphenyl-1,4-dioxan (IVa) and (IVb)), Summerbell et al. ${ }^{3 b}$ concluded that ". . . Since catalytic hydrogenation is known to give predominantly the cis
${ }^{9}$ Stumpf, Z. Elcktrochcm., 1953, 5\%, 690.
isomer, the 'cis'-configuration in the 2,3-diphenyl- $p$-dioxan series must be assigned to the isomer melting at $136^{\circ}$, and not to the $48^{\circ}$ isomer as previously suggested. The $48^{\circ}$ isomer must correspondingly be 'trans'- "'.

Molecular Conformation of 2 3-Dichloro-1 4-dioxan M. p. $52^{\circ}$ (IIb), and the Two Isomeric

(B) 23 -Diphenyl-1 4-dioxans, M. p. $46^{\circ}$ (IVa): M. p. $132^{\circ}$ (IVb).From the geometric assignments shown in Table 3, Caspi et al., ${ }^{8}$ after studying the n.m.r. spectra of the compounds mentioned above, conferred molecular conformations Bee to (IIb), Caa $\longrightarrow$ Cee to (IVa), and Baa to (IVb). However, Bee cannot be the favoured conformation for (IIb). A conformation such as (B) involves 3 pairs of eclipsed $\mathrm{H}-\mathrm{H}$ interactions, one eclipsed $\mathrm{Cl}-\mathrm{Cl}$ dipole interaction, and one 1,4 -interaction of the oxygen atoms across the ring. Besides, a boat form of six-membered rings would be much more flexible than a chair, as can be seen from a model, and it is difficult to understand why a conformation such as (B) should be rigid, since the " flipping" of the ring could greatly reduce the strain due to all these interactions. Furthermore, if (IIb) indeed exists as form Bee or (B), its dipole moment should not be smaller than 4 D , while the experimentally determined moment is only 3D. It cannot be in form Baa either, as such a conformation should give a moment of less than 2d.

Finally, the n.m.r. spectrum ${ }^{8}$ rules out the possibility that compound (IIb) may exist in form Cae or Bae, as these conformations require an AB splitting pattern for the 2,3protons instead of the single peak observed. Therefore, none of the conformations compatible with a cis assignment can be assigned to (IIb), and it also must be a trans-isomer. Because the other isomer (IIa) has already been proved to be trans with the ring in a chair form and the substituents diaxial, the isomer of 2,3 -dichloro-1,4-dioxan melting at $54^{\circ}$ (IIb) must be in form Cee, i.e., with the ring in a chair form and the substituents diequatorial.

The theoretical moment calculated for form $C e e$, if we assume $\mu_{0.01}=1.84 \mathrm{D}$, is 3.04 D (indistinguishable from that observed) and the $\infty\left({ }_{m} K_{2}\right)$ 's calculated for this form range from $193 \times 10^{-12}$ (with $b^{\mathrm{C}-\mathrm{Cl}}$ 's from methyl chloride) to $256 \times 10^{-12}$ (with $b^{\mathrm{C}-\mathrm{Cl}}$ 's from t-butyl chloride); the calculations are summarised in Table 4.

The lower of these values for ${ }_{\mathrm{m}} K$ approaches the experimental value of $186 \times 10^{-12}$. The assignment of conformation Cee to compound (IIb) is thus reconcilable with dipole

(c) moment and molar Kerr constants. The nearness of the observed ${ }_{\infty}\left({ }_{m} K_{2}\right)$ to that calculated by using bond polarisabilities obtained from methyl chloride, indicates that the dipole-dipole interaction of the two $\mathrm{C}-\mathrm{Cl}$ links may excercise some "restraint" on the bonding electrons, making them less polarised and less polarisable.

Further support comes from the n.m.r. spectrum of compound (IIb). Its $\mathrm{A}_{2} \mathrm{~B}_{2}$ pattern differs little, if at all, from that of trans- $p$-dioxino $[2,3-b]-p$-dioxin (V). As we know that the equatorial substituent will not have any appreciable effect on the protons across the ring, and that the conformation of the dioxinodioxin as two trans-fused chairs has never been questioned, the spectral similarity, again, indicates that the two chlorines in compound (IIb) are most probably diequatorial.

For 2,3-diphenyl-1,4-dioxan, m. p. $132^{\circ}$ (IVa), a measured moment of 0.65 D excludes the possibility that the ring might have a boat form (which would exhibit a moment of not less than 1.5 D , if $\mu_{\mathrm{C}-\mathrm{Ph}}$ is 0.4 D ). Since the molecule is rigid, and only a single, unsplit peak is observed for the $\mathrm{C}_{2}, \mathrm{C}_{3}$ protons in its n.m.r. spectra, ${ }^{8}$ the isomer must be the transform, contrary to the previous assignment ${ }^{3 b}$ It is generally accepted that catalytic hydrogenation gives predominantly the cis-isomer; ${ }^{10}$ the hydrogenation of 2,3 -diphenyl-1,4dioxen (III) seems to be the first major exception to this rule.
${ }^{10}$ Burwell, jun., Chem. Rev., 1957, 5\%, 895.

Table 4.
Polarisability semi-axes, moment components, etc., for 2,3-dichloro-1,4-dioxan (IIb), m. p. $54^{\circ}$.

| Principal | Direction cosines with $\dagger_{Z}$ |  |  |
| :---: | :---: | :---: | :---: |
| semi-axes |  |  |  |$\quad X \quad Y \quad{ }_{Z}$

Calc. with $b^{\mathrm{C}-\mathrm{Cl}}$ 's from methyl chloride:

| $b_{1}=1.273$ | $+0.9125$ | 0 | -0.4091 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $b_{2}=1.307$ | 0 | 1 | 0 | 3.04 | $+193$ |
| $b_{3}=1 \cdot 118$ | +0.4091 | 0 | $+0.9125$ | 0 |  |
| with $b^{\mathrm{C}-\mathrm{Cl}}$ 's from t -butyl-chloride: |  |  |  |  |  |
| $b_{1}=1.167$ | +0.9497 | 0 | -0.3131 | 0 |  |
| $b_{2}=1.369$ | 0 | 1 | 0 | $3 \cdot 04$ | $+256$ |
| $b_{3}=1.076$ | +0.3131 | 0 | $+0.9497$ | 0 |  |

* Bond polarisabilities used throughout this work are those given in refs. $4 c$ and, for $\mathrm{C}-\mathrm{O}$ bonds,

4 d . $\dagger$ Where $X, Y$, and $Z$ are defined as shown in (C).
Now, having concluded that the ring in the isomer, m. p. $132^{\circ}$, of 2,3 -diphenyl-1,4-dioxan (IVb) must be in a chair form, with the phenyl substituents trans, we can see that the molecular conformation must, therefore, be either Caa or Cee. Dipole moment and Kerr effect measurements can offer little help in deciding which of the two is to be favoured, because it is impossible to differentiate between non-polar Caa and Cee experimentally. However, the n.m.r. spectrum of compound (IVb) does provide some important information in this respect; the portion of the spectrum corresponding to the absorption of the aromatic protons is reproduced as Fig. 2.

The complexity of the spectrum (which does not vary from $35^{\circ}$ to $100^{\circ}$ ) indicates that rotation of the phenyl groups is severely hindered. ${ }^{11}$ In the same spectrum, the series of $\mathrm{A}_{2} \mathrm{~B}_{2}$ peaks centred at $\tau=6.14$ p.p.m. ${ }^{8}$ for the protons at positions 5 and 6 is very similar to those of compounds (IIb) and (V), showing no abnormal shielding of the axial protons by the phenyl rings. All these facts leave no doubt that the correct conformation for (IVb) must be Cee and, because of " overcrowding " in the molecule, the two phenyl rings have to be parallel to each other as illustrated in (D):



Fig. 2. The aromatic portion of the n.m.r. spectrum of 2,3-diphenyl-1,4-dioxan, m. p.
$132^{\circ}$ (IVb).
As for the isomer of 2,3-diphenyl-1,4-dioxan melting at $46^{\circ}$ (IVa). a chair form for the dioxan ring is revealed by its small dipole moment of 0.42 D . Such a finding, in conjunction with the flexibility of the ring, definitely proves that this isomer cannot be trans (because if it were trans and inverting, it must invert between Caa and Cee, yet the latter
${ }^{11}$ Curtin, Gruen, Hendrickson, and Knipmeyer, J. Amcr. Chom. Soc., 1961, 83, 4838.
corresponds to the rigid, stable isomer melting at $132^{\circ}$ ). Therefore, compound (IVa) must be the cis-form, as pointed out by Stumpf. ${ }^{9}$ Its molecular conformation is best described as inverting between two identical chairs-Cae $(\mathrm{E}) \rightleftharpoons(\mathrm{F})$.

(E)

(F)

Incidentally, the two peaks in the n.m.r. spectrum of compound (IVa), as recorded here, differ in positions with respect to those given in ref. 8. According to our pre-calibrated spectrum, the lower-field peak occurs at $\tau=5 \cdot 50-5 \cdot 60$ and the higher at $\tau=5 \cdot 95-6 \cdot 10$ p.p.m. for solutions of concentrations from $3-20 \%$. The shifting up-field of the $2,3-$ protons compared with those of compound (IVb) does not require any explanation other than that, in compound (IVa), the 2,3-protons while in the equatorial disposition are shielded by the neighbouring phenyl group and "drag up " the average signal between axial and equatorial extremes.

Molecular Conformation of 2,3-Diphenyl-1,4-dioxen (III).-From its similarity to cyclohexene, the dioxen ring would be expected to exist as a " half-chair." ${ }^{12,13}$ Following the vector analytical approach of Corey and Sneen, ${ }^{14}$ and adopting the following bond lengths $-\mathrm{C}-\mathrm{C}=1 \cdot 54, \mathrm{C}-\mathrm{O}=1 \cdot 42$, and $\mathrm{C}=\mathrm{C}=1.34 \AA$, we see that the molecular geometry of the " half-chair " and the extreme boat forms of the dioxen ring emerge as (G) and (H).


Extreme boat
(H)


Partial molecular co-ordinates: $\mathrm{O}_{1}(-0.773,1 \cdot 191,0), \mathrm{C}_{2}$ $(0,0,0), \mathrm{C}_{3}(1 \cdot 340,0,0), \mathrm{O}_{4}(2 \cdot 113,1 \cdot 191,0), \mathrm{C}_{5}(1 \cdot 333$, $2 \cdot 308,-0.390)$ and $\mathrm{C}_{6}(0.007,2.308,0.390)$.
Ring angles: $\angle \mathrm{O}_{1}=\angle \mathrm{O}_{4}=111^{\circ} 08^{\prime}, \angle \mathrm{C}_{2}=\angle \mathrm{C}_{3}=123^{\circ}$ and $\angle \mathrm{C}_{5}=\angle \mathrm{C}_{6}=109^{\circ} 30^{\prime}$.

Partial molecular co-ordinates: $\mathrm{O}_{1}(-0.623,1 \cdot 276,0), \mathrm{C}_{2}$ ( $0,0,0$ ), $\mathrm{C}_{3}(1 \cdot 340,0,0), \mathrm{O}_{4}(1 \cdot 963,1 \cdot 276,0), \mathrm{C}_{5}(1 \cdot 440$, $2.058,1.064$ ) and $\mathrm{C}_{6}(-0.100,2 \cdot 058,1.064)$.
Ring angles: $\angle \mathrm{O}_{1}=\angle \mathrm{O}_{4}=109^{\circ} 28^{\prime}, \angle \mathrm{C}_{2}=\angle \mathrm{C}_{3}=116^{\circ}$ and $\angle \mathrm{C}_{5}=\angle \mathrm{C}_{6}=111^{\circ} 37^{\prime}$.

If $\mu_{\mathrm{C}-\mathrm{O}}=1.38 \mathrm{D}$, the theoretical dipole moment calculated for a " half-chair" is 0.14 D , while that of the extreme boat is $2 \cdot 22 \mathrm{D}$. Therefore, in contrast to the case of cyclohexene, dipole-moment measurements should be able to give information about the nature of the dioxen ring. Dioxen, itself seemingly too unstable, has not yet had its moment measured. For its 2,3 -diphenyl derivative (III) we now find $\mu=1.0 \mathrm{D}$, which is between the maximum calculated for the " half-chair" form ( J ) and the minimum calculated for the boat form ( K ), these values being 0.54 and $2 \cdot 22 \mathrm{D}$, respectively, which are deduced by assuming a value of 0.4 D for $\mu_{\mathrm{Phc}}$. Further, the n.m.r. spectrum of the dioxen (III) shows only two single

[^1]peaks, one at $\tau=5 \cdot 66$ (arising from 5,6 -protons) and the other at $\tau=2.80$ p.p.m. (due to the phenyl rings); thus the dioxen ring is indicated as flexible at room temperatures. Since the observed polarity exceeds that expected for (J) or for flatter versions of (J), some participation of ( K ) may be presumed. On the basis of the moments quoted, $16 \%$

(J)

(K)
of $(\mathrm{K})$ and $84 \%$ of $(\mathrm{J})$ is required to give an apparent moment of 1 D . The contribution from (K) could be even less (down to $1-5 \%$ ) were a $\Delta F$ of $\sim 2 \mathrm{k} . \mathrm{cal} . /$ mole to be assigned between $(\mathrm{J})$ and $(\mathrm{K})$; this appears not unreasonable when compared with the corresponding figure ( $\Delta F 2.7 \mathrm{k} . \mathrm{cal} . / \mathrm{mole}$ ), for cyclohexene. ${ }^{12}$

Therefore, we conclude from our dipole-moment measurements that the dioxen ring in 2,3-diphenyl-1,4-dioxene (III) must exist predominantly in a " half-chair " form.

A priori calculations of the theoretical molar Kerr constants cannot be made with certainty owing to lack of definite information about directions of $\mu_{\text {resuitant }}$, exaltations, etc.; nevertheless, it is qualitatively obvious that the observed ${ }_{\infty}\left({ }_{m} K_{2}\right)\left(27 \times 10^{-12}\right)$ is not incompatible with the description given above.

The authors thank Mr. D. C. Dehlsen for running the n.m.r. spectra, and Mr. R. K. Pierens for confirming the Kerr effect of (III).


[^0]:    ${ }^{1}$ Dehn, J. Org. Chem., 1958, 23, 147.
    ${ }_{2}$ Broseken, Tellegen, and Henriquez, Rec. Trav. chim., 1931, 50, 909.
    ${ }^{3}$ (a) Summerbell and Lunk, J. Amer. Chem. Soc., 1957, 79, 4802; (b) Summerbell and Berger, ibid., 1959, 81, 633, and references therein.
    ${ }^{4}$ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem., 1955, 5, 261; (b) Ch. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ. Inc., New York, 3rd edn., Vol. I, 2459; (c) Le Fè̀vre, Proc. Roy. Soc. New South Wales, 1961, 95, 1; (d) Le Fèvre, Sundaram, and Pierens, $J ., 1963,479$.
    ${ }^{5}$ Le Fèvre and Sundaram, J., 1962, 1494.
    ${ }^{6}$ Altona, Romers, and Havinga, Tetrahedron Letters, 1959, No. 10, 16.
    ${ }^{7}$ Henriquez, Physica, 1933, 1, 41.
    ${ }^{8}$ Caspi, Wittstruck, and Piatak, J. Org. Chem., 1962, 2\%, 3183.

[^1]:    ${ }^{12}$ Beckett, Freeman, and Pitzer, J. Amer. Chem. Soc., 1948, 70, 4227.
    ${ }^{13}$ Barton, Cookson, Klyne, and Shoppee, Chem. and Ind., 1954, 21 ; see also Raphael and Stenlake, ibid., 1953, 1286; Orloff, Chem. Rev., 1954, 54, 409.
    ${ }^{14}$ Corey and Sneen, J. Amer. Chem. Soc., 1955, 7ry, 2505.

